Assignment 9 Solutions

Page 253:

- 2. A musical interval can be expressed as a ratio: $\frac{f_2}{f_1} = \frac{n}{m}$. What is n and m for
- (a) a musical fifth?
- (b) a major third.

The harmonic series consists of the integer multiples of a fundamental frequency starting with 1, then 2, 3, and so on. The frequency intervals between the successive integers have names. The interval f_1 to f_2 is an octave, the interval f_2 to f_3 is a fifth, the interval f_3 to f_4 is a fourth, the interval f_4 to f_5 is a major third, and the interval f_5 to f_6 is a minor third. So for a fifth $\frac{f_3}{f_2} = \frac{3}{2}$, and for a major third $\frac{f_5}{f_4} = \frac{5}{4}$.

- 3. Sart at the lowest note on a piano, A_0 , and play upward from that note for seven successive octaves.
- (a) What note do you end up on? If we go up an octave from an A_0 , we land on an A so we increase the subscript by one and call the note A_1 . If we go seven successive octaves from A_0 , we will be at A_7 .
- (b) How many musical fifths are between these starting and ending points? It is probably easier to do this while sitting at a piano keyboard, but no matter. Here are the chromatic keys in an octave: C, C,# D, D,# E, F, F,# G, G,# A, A,# B, C. Keeping in mind that there are 3 whole tones and one semitone making up the interval of a fifth, the so called circle of fifths starting on A_0 is: A_0 , E_1 , B_1 , $F_2^\#$, $C_3^\#$, $G_3^\#$, $D_4^\#$, $A_4^\#$, F_5 , C_6 , G_6 , D_7 , A_7 . From this sequence of fifths, we see that after 12 successive fifths we land back on an A, in this case A_7 . So 12 successive fifths must be the same as 7 octaves. As we shall see in the solutions for the next assignment, if we use the harmonic ratios given above to define the octave and the fifth, there is no way for 7 octaves to equal 12 fifths. This will mean that building any musical scale is going to be a compromise!