4. Musical Sounds, Complex Tones, and the Perception of Timbre

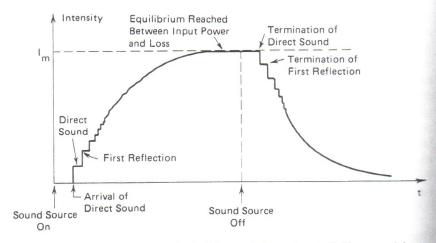


FIGURE 4.27 Typical tone intensity buildup and decay in a hall (linear scale).

of 1.5-2s. Longer times would blurr too much typical tone successions shorter times would make the music sound "dry" and dull (see Sec. 4.8)

We may discuss a few simple mathematical relationships that appear room acoustics. Let us imagine an enclosure of perfectly reflecting wall with no absorption whatsoever, but with a built-in hole of area Whenever the maximum intensity I_m is reached (Fig. 4.27), acoustical energy will be escaping through the hole at a rate given by the product $I_m A$. Since this corresponds to the steady state in which the power supplied by the instrument equals the energy loss rate, we can set P= I_mA , or

$$I_m = \frac{P}{A} \tag{4.4}$$

In a real case, of course, we do not have perfectly reflecting walls holes in them. However, we still may imagine a real absorbing wall as a second and a second as a second as a second as a second a second as a second a were made of a perfectly reflecting material with holes in it, the representing a fraction a of its total surface. a is called the absorption coefficient of the wall's material. A surface of S square meters, sorption coefficient a, has the same absorption properties as a personal reflecting wall of the same size but with a hole of area A = Sa. Absorb tion coefficients depend on the frequency of the sound (usually increase for higher frequencies), and have values that range from 0.01 (market almost perfect reflector) to as much as 0.9 (acoustical tiles). Taking this into account, we can rewrite relation (4.9) in terms of the actual surfaces S_1, S_2, \ldots with corresponding absorption coefficients a_1, \ldots

4.7. Trapping and Absorption of Sound V

$$I_m = \frac{1}{S_1 a_1 + 5}$$

This relation can be used to estimate wanted values of I_m , for a given instru bution of absorbing wall materials.

The reverberation time τ_r is found to of the hall and inversely proportional $A = S_1 a_1 + S_2 a_2 + \cdots$. Experiments s

$$\tau_r = 0.16 \frac{1}{S_1 a_1 + 1}$$

with V in cubic meters, S in square mabsorption coefficients usually increase decrease with increasing pitch: bass no otes.

One of the problems in room acou influences (increases) the absorption p aken into account in the design of aud effects related to the unpredictable six estribution, it would be necessary to mefficient is nearly independent of wi sorbing effect of the audience is max long reverberation times, such as in ch performer is so exposed to (and har ronment as an organist.

Tone distribution, buildup, and deci mendence of the absorption coefficients sical characteristics of musical tones ironment, hence on the perception c pendence of tones is deeply affect mered, and, for instance, a staccato ending on the reverberation properti so affected, since the absorption c ent. Finally, taking into account the a given point in a field of reverb be shown that the resulting SPL fluctuate at random, introducing a mized timbre in a closed mus neken, 1973).

There are other second-order effects. phenomenon called diffraction. Wh a pillar in a church or a person sitt ons may arise: (1) If the wavelen than the size (diameter) of the c

¹⁶ It is assumed here that $I_{\rm m}$, represents the diffuse, omnidirectional sound flow.