## Exam II Key

| Physics 0082 |     | October 29, 2013 |
|--------------|-----|------------------|
| Your Name    | Key |                  |

Instructions: Answer the multiple-choice by circling the letter next to the correct answer. For the true false section, circle either True or False. Each multiple choice question is worth 3 points and each true false question is worth 2 points for a total of 100pts. THE CORRECT ANSWER IS INDENTED.

## Multiple Choice (Circle the correct answer)

- 1. The limit of frequency discrimination  $\Delta f_D$  is
  - (a) the smallest frequency difference that we can perceive when two pure tones are sounded in succession, first one and then the other, rather than played together.
  - (b) the largest frequency difference that we can still hear individual beats from the amplitude modulation of two pure tones played together very close in frequency.
  - (c) the smallest frequency difference such that two pure tones sound as distinct tones rather than a single fused tone when played together.
  - (d) the smallest frequency difference at which two pure tones sound smooth rather than rough when played together.
  - (e) the same thing as the beat frequency.

## 2. The critical band $\Delta f_{CB}$ is

- (a) the smallest frequency difference that we can perceive when two pure tones are sounded in succession, first one and then the other, rathr than played together.
- (b) the largest frequency difference that we can still hear individual beats from the amplitude modulation of two pure tones played together very close in frequency.
- (c) the smallest frequency difference such that two pure tones sound as distinct tones rather than a single fused tone when played together.
- (d) the smallest frequency difference at which two pure tones sound smooth rather than rough when played together.
- (e) the same thing as the beat frequency.

- 3. If two oboes play a concert A at pitches of 440 and 442 Hz respectively, how many beats per second will you hear?
  - (a) 4
  - (b) 2
  - (c) 1
  - (d) 0
  - (e) 8
- 4. Two pure tones having frequencies 440 and 660 Hz are played together softly. The following is likely to be perceived:
  - (a) 220 Hz in addition to the 440 and 660 Hz.
  - (b) 220 Hz, 880Hz, 1320 Hz in addition to the 440 and 660 Hz
  - (c) just the 440 and 660 Hz
  - (d) 110 and 220 Hz in addition to the 440 and 660 Hz
  - (e) 110 Hz, 220 Hz, 880 Hz, 1320 Hz in addition to the 440 and 660 Hz
- 5. Two pure tones having frequencies 440 and 660 Hz are played together loudly. The following is likely to be perceived:
  - (a) 220 Hz in addition to the 440 and 660 Hz
  - (b) 220 Hz, 880Hz, 1320 Hz in addition to the 440 and 660 Hz
  - (c) just the 440 and 660 Hz
  - (d) 110 and 220 Hz in addition to the 440 and 660 Hz
  - (e) 110 Hz, 220 Hz, 880 Hz, 1320 Hz in addition to the 440 and 660 Hz
- 6. 4. A string fixed a both ends is reasonating at the 9th harmonic. The standing wave pattern has
  - (a) an equal number of nodes and antinodes.
  - (b) one more antinode than node.
  - (c) nine nodes and ten antinodes.
  - (d) ten nodes an nine antinodes.
  - (e) eleven nodes and ten antinodes

| 7.  | 7. A string fixed at both ends is 63 cm in length. The wavelength of the 7th harmonic is |                                                                                                                                                                                                |  |
|-----|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | (a)                                                                                      | 9 cm.                                                                                                                                                                                          |  |
|     | (b)                                                                                      | 18 cm.                                                                                                                                                                                         |  |
|     | (c)                                                                                      | 27 cm.                                                                                                                                                                                         |  |
|     | (d)                                                                                      | 36 cm.                                                                                                                                                                                         |  |
|     | (e)                                                                                      | 7 cm.                                                                                                                                                                                          |  |
| 8.  | The<br>be                                                                                | tension in a string fixed at both ends is multiplied by 4. The fundamental frequency will                                                                                                      |  |
|     | (a)                                                                                      | multiplied by 2.                                                                                                                                                                               |  |
|     | (b)                                                                                      | multiplied by 4.                                                                                                                                                                               |  |
|     | (c)                                                                                      | divided by 2.                                                                                                                                                                                  |  |
|     | (d)                                                                                      | divided by 4.                                                                                                                                                                                  |  |
|     | (e)                                                                                      | none of the above.                                                                                                                                                                             |  |
| 9.  | A vi<br>that                                                                             | brating cylindrical column of air which is closed at one end has a spectrum of frequencies                                                                                                     |  |
|     | (a)                                                                                      | includes only the even harmonics.                                                                                                                                                              |  |
|     | (b)                                                                                      | includes all the integer harmonics.                                                                                                                                                            |  |
|     | (c)                                                                                      | is identical to a cylindrical column of the same length open at both ends.                                                                                                                     |  |
|     | (d)                                                                                      | includes only the odd harmonics.                                                                                                                                                               |  |
|     | (e)                                                                                      | is not harmonic.                                                                                                                                                                               |  |
| 10. | The at th                                                                                | amplitudes of the successive harmonics in a plucked string fall as $\frac{1}{n^2}$ . For a string plucked ne midpoint, the ratio of the amplitude of the 7th harmonic to the first harmonic is |  |
|     | (a)                                                                                      | 49.                                                                                                                                                                                            |  |
|     | (b)                                                                                      | 25.                                                                                                                                                                                            |  |
|     | (c)                                                                                      | 0.                                                                                                                                                                                             |  |
|     | (d)                                                                                      | 1/25.                                                                                                                                                                                          |  |
|     | (e)                                                                                      | 1/49.                                                                                                                                                                                          |  |

- 11. The amplitudes of the successive harmonics in a plucked string fall as  $\frac{1}{n^2}$ . For a string plucked at the midpoint, the ratio of the amplitude of the 2nd harmonic to the 5th harmonic is
  - (a) 49.
  - (b) 25.
  - (c) 0.
  - (d) 1/25.
  - (e) 1/49.
- 12. If we compare the frequency spectrum of a struck string with that of a string plucked in the same place we see that
  - (a) the amplitudes of the struck string fall as  $\frac{1}{n^3}$  compared with  $\frac{1}{n^2}$  for the plucked string.
  - (b) the amplitudes of the struck string fall as  $\frac{1}{n}$  compared with  $\frac{1}{n^2}$  for the plucked string.
  - (c) a string struck at its midpoint supports all of the harmonics while a string plucked at its midpoint supports only the odd harmonics.
  - (d) a string struck at its midpoint supports only the even harmonics while a string plucked at its midpoint supports only the odd harmonics.
  - (e) the amplitudes of both the struck and plucked string fall as  $\frac{1}{n^2}$ .
- 13. If we compare the harmonic spectrum of the flute with that of the clarinet, we see that
  - (a) the clarinet behaves like cylindrical column that is open at both ends while the flute behave like a cylindrical column closed at one end.
  - (b) the flute supports only the odd harmonics while the clarinet supports all of the harmonics.
  - (c) the flute embouchure hole behaves like a pressure node and the clarinet reed mouthpiece combination behaves like a pressure antinode.
  - (d) both instruments support the full harmonic spectrum even though the methods of exciting the air resonance inside the instruments are different.
  - (e) none of the above.

|        | 5                                                                                                                                                                                                                                                                                                                             |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r<br>f | hen a string is plucked parts of the string remain stationary over substantial parts of the sulting cycle of oscillation. For example the point of the string 1/8 of the distance from its ted end will remain stationary for approximately what fraction of the cycle if the string is arted by plucking it at its midpoint? |
|        | a) 7/8                                                                                                                                                                                                                                                                                                                        |
|        | 3/4                                                                                                                                                                                                                                                                                                                           |
|        | c) $1/2$                                                                                                                                                                                                                                                                                                                      |
|        | d) 1/4                                                                                                                                                                                                                                                                                                                        |
|        | e) 1/8                                                                                                                                                                                                                                                                                                                        |
|        | stretched string 32 cm in length is up-bowed at a point 4 cm from one end. What fraction the time does it spend slipping or falling down with respect to the bow?a)                                                                                                                                                           |
|        | a) 7/8                                                                                                                                                                                                                                                                                                                        |
|        | b) $4/5$                                                                                                                                                                                                                                                                                                                      |
|        | c) $3/4$                                                                                                                                                                                                                                                                                                                      |
|        | d) $1/5$                                                                                                                                                                                                                                                                                                                      |
|        | e) $1/8$                                                                                                                                                                                                                                                                                                                      |
| 16.    | ne overall length of the basilar membrane is about                                                                                                                                                                                                                                                                            |
|        | a) 15 mm                                                                                                                                                                                                                                                                                                                      |
|        | b) 25 mm                                                                                                                                                                                                                                                                                                                      |
|        | $_{ m c})$ 35 mm                                                                                                                                                                                                                                                                                                              |
|        | d) 45 mm                                                                                                                                                                                                                                                                                                                      |
|        | e) none of the above                                                                                                                                                                                                                                                                                                          |
| I      | trumpet with no valves pressed down has a length of 140 cm. The trumpet player lowers the tch by four semitones by pressing values 2 and 3 together. The ideal length of the trumpet r this configuration is                                                                                                                  |
|        | a) 148.4 cm.                                                                                                                                                                                                                                                                                                                  |
|        | b) 157.3 cm.                                                                                                                                                                                                                                                                                                                  |
|        | c) 166.7 cm.                                                                                                                                                                                                                                                                                                                  |
|        | d) 176.7 cm.                                                                                                                                                                                                                                                                                                                  |
|        | e) 187.3 cm.                                                                                                                                                                                                                                                                                                                  |

|                                                                                                                                                                                           | 6  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 18. 13. A trombone in 1st postion has a length of 270 cm. The trombone player lowers the pitc of the trombone by four semitones by moving the slide out from 1st position to 5th position |    |
| The distance the slide is moved out is closest to                                                                                                                                         |    |
| (a) 35.4 cm.                                                                                                                                                                              |    |
| (b) 25.8 cm.                                                                                                                                                                              |    |
| (c) $45.7 \text{ cm}$ .                                                                                                                                                                   |    |
| (d) 16.7 cm.                                                                                                                                                                              |    |
| (e) $56.5 \text{ cm}$ .                                                                                                                                                                   |    |
| 19. 14. The frequency of a Helmholtz resonator with a volume of 500 cm <sup>3</sup> , an area of 3 cm <sup>2</sup> , an a length of 1 cm is closest to                                    | .d |
| (a) 125 Hz.                                                                                                                                                                               |    |
| (b) 250 Hz.                                                                                                                                                                               |    |
| (c) 375 Hz.                                                                                                                                                                               |    |
| (d) 425 Hz.                                                                                                                                                                               |    |
| (e) 550 Hz.                                                                                                                                                                               |    |
| 20. For the resonator in question 14 in order to double the frequency of the resonator we could                                                                                           |    |
| (a) increase its area by a factor of 2.                                                                                                                                                   |    |
| (b) decrease its length by a factor of 2.                                                                                                                                                 |    |
| (c) decrease the volume by a factor of 8.                                                                                                                                                 |    |

## True False Section (Circle the Correct Answer)

increase the area by a factor of 4.

1. If a simple sine wave of frequency f is distorted, the resulting complex wave may have frequencies that are integral multiples of the original frequency.

(a) True

(e) none of the above.

(b) False

(d)

- 2. In chapter 9 of your text book, the author frequently confuses intensity with amplitude in discussing the sound spectrum of a plucked or struck string.
  - (a) True
  - (b) False

|           | 5. A stretched string plucked at a point $\frac{1}{4}$ of its length from a fixed end would having missing harmonics 2, 4, 8, 12, etc.                                                                                                                  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (a) ]     | $\Gamma$ rue                                                                                                                                                                                                                                            |  |
| (b)       | False                                                                                                                                                                                                                                                   |  |
| the en    | ressure nodes of a cylindrical air column open at both ends are not located exactly at ads of the air column, but rather at a small distance outside the ends of the cylinder ag the air column that increases as the radius of the cylinder increases. |  |
| (a)       | True                                                                                                                                                                                                                                                    |  |
| (b) F     | Talse                                                                                                                                                                                                                                                   |  |
| 7. The ra | ange of frequencies 20-4000Hz covers about $2/3$ of the length of the basilar membrane.                                                                                                                                                                 |  |
| (a)       | True                                                                                                                                                                                                                                                    |  |
| (b) F     | False                                                                                                                                                                                                                                                   |  |
| tween     | asilar membrane is approximately a logarithmic spectrum analyzer. The distance be-<br>resonant points separated in frequency by one octave increases by a factor of 2 for each<br>sive octave.                                                          |  |
| (a) ]     | True                                                                                                                                                                                                                                                    |  |
| (b)       | False                                                                                                                                                                                                                                                   |  |
| the en    | ressure nodes of a cylindrical air column open at both ends are not located exactly at ads of the air column, but rather at a small distance outside the ends of the cylindering the air column that increases as the radius of the cylinder increases. |  |
| (a)       | True                                                                                                                                                                                                                                                    |  |
| (b) F     | False                                                                                                                                                                                                                                                   |  |
|           |                                                                                                                                                                                                                                                         |  |

3. A plucked string is released from rest and initially has only kinetic energy.

4. A struck string starts with an initial velocity from its equilibrium position and has both

(a) True

(a) True

False

potential and kinetic energy.

False

(b)

(b)

|       |                             | 8                                                                                                                                                                |
|-------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | A good viol<br>frequencies. | in must have the tap tones of the wood in the top and back at exactly the same                                                                                   |
|       | (a) True                    |                                                                                                                                                                  |
|       | (b)                         | False                                                                                                                                                            |
| 11. A | A good viol                 | in has the MAR and MWR frequencies exactly a musical third apart                                                                                                 |
|       | (a) True                    |                                                                                                                                                                  |
|       | (b)                         | False                                                                                                                                                            |
|       |                             | e 1st overtone of the clarinet is the 3rd harmonic of the fundamental rather than emonic, it requires 7 side holes rather than 6 to play a basic diatonic scale. |
|       | (a)                         | True                                                                                                                                                             |
|       | (b) False                   |                                                                                                                                                                  |
|       |                             | net which plays a semitone lower than the B-flat clarinet with identical fingerings ately 6 $\%$ longer than the B-flat clarinet.                                |
|       | (a)                         | True                                                                                                                                                             |
|       | (b) False                   |                                                                                                                                                                  |
|       | <del>-</del>                | with valves one and two depressed plays approximately 2 semitones below the no valves depressed.                                                                 |
|       | (a) True                    |                                                                                                                                                                  |
|       | (b)                         | False                                                                                                                                                            |
|       | _                           | g plucked in its middle the points along the string near the ends are at rest for a fraction of each period.                                                     |
|       | (a)                         | True                                                                                                                                                             |
|       | (b) False                   |                                                                                                                                                                  |
| 16. H | For a string                | g bowed at its middle the points along the string near the ends are at rest for a fraction of each period.                                                       |
|       | (a) True                    |                                                                                                                                                                  |
|       | (b)                         | False                                                                                                                                                            |
|       |                             |                                                                                                                                                                  |

| 9                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17. A jet-stream playing over an edge may produce a sound of definite pitch, but it must be carefully directed because on one side of the edge it will produce a sound while on the other side it will not. |
| (a) True                                                                                                                                                                                                    |
| (b) False                                                                                                                                                                                                   |
| 18. The pitch of an edge tone is inversely proportional to the velocity of the jet-stream playing over the edge.                                                                                            |

- (a) True
  - (b) False
- 19. The sound from a clarinet is started by the vibration of the read, but the pitch is controlled by the frequency of the resonance setup in the air column of the clarinet that then also controls the frequency of opening and closing the read on the mouthpiece.
  - (a) True
  - (b) False
- 20. A bell is necessary on brass instruments to insure the efficient radiation of the sound, but its addition has no effect on the pitches of the resonances inside the instrument.
  - (a) True
  - (b) False